Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Methanol-κO)(perchlorato-κO)bis-(triphenylphosphine-κP)silver(I)

Li-Na Cui,^a Qiong-Hua Jin,^a* Ke-Yi Hu^a and Cun-Lin Zhang^b

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ^bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China Correspondence e-mail: jinqh204@163.com

Received 22 June 2010; accepted 14 July 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.040; wR factor = 0.103; data-to-parameter ratio = 14.6.

In the title complex, $[Ag(ClO_4)(CH_3OH)(C_{18}H_{15}P)_2]$, the angles around the central Ag^+ ion indicate that it is in a distorted tetrahedral coordination. The coordination sphere of silver is formed by two P atoms of two triphenylphosphine ligands, one O atom of a perchlorate anion and one O atom of a methanol molecule. The crystal structure is stablized by a bifurcated intermolecular $O-H \cdots O$ hydrogen bond, involving the O-H donor from methanol and two acceptor O atoms from the perchlorate anion, so forming a zigzag chain propagating in [010].

Related literature

For related structures, see: Cui *et al.* (2010); Cingolani *et al.* (2002); Nicola *et al.* (2007); Pettinari *et al.* (2007); Effendy *et al.* (2007*a,b*); Awaleh *et al.* (2005); Balakrishna *et al.* (2009). For general backgound to the structural chemistry of silver(I) complexes with ligands containing phosphine groups and nitrogen atoms, see: Jin *et al.* (2010); Wu *et al.* (2009).

Experimental

Crystal data

 $[Ag(ClO_4)(CH_4O)(C_{18}H_{15}P)_2]$ $M_r = 763.90$ Monoclinic, $P2_1/n$ a = 13.6426 (15) Å b = 12.8444 (14) Å c = 19.714 (2) Å $\beta = 92.602$ (1)° $V = 3450.9 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.80 \text{ mm}^{-1}$ T = 298 K $0.33 \times 0.22 \times 0.14 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	17113 measured reflections
diffractometer	6073 independent reflections
Absorption correction: multi-scan	3802 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.040$
$T_{\min} = 0.779, \ T_{\max} = 0.897$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	415 parameters
$vR(F^2) = 0.103$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
073 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H5\cdots O2^i$	0.82	2.42	3.157 (6)	151
$O5-H5\cdots O3^{i}$	0.82	2.30	3.033 (6)	150

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Keystone Basic Research Program (973 Program) under grants Nos. 2007CB310408 and 2006CB302901, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the jurisdiction of Beijing Municipality, and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2191).

References

Awaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem. 44, 7833-7845.

- Balakrishna, M. S., Venkateswaran, R. & Mobin, S. M. (2009). *Inorg. Chim. Acta*, **362**, 271–276.
- Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cingolani, A., Effendy, Pellei, M., Pettinari, C., Santini, C., Skelton, B.W.& White, A.H. (2002). *Inorg. Chem.* 41, 6633–6645.

Cui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m871. Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B.W. & White, A.H.

- (2007b). Inorg. Chim. Acta, **360**, 1451–1465.
- Effendy, Marchetti, F., Pettinari, C., Skelton, B.W.& White, A.H. (2007a). *Inorg. Chim. Acta*, **360**, 1424–1432.
- Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441–445.
- Nicola, C.D., Effendy, Marchetti, F., Pettinari, C., Skelton, B.W. & White, A.H. (2007). *Inorg. Chim. Acta*, **360**, 1433–1450.
- Pettinari, C., Ngoune, J., Skelton, B. W. & White, A. H. (2007). *Inorg. Chem. Commun.* 10, 329–331.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096– m1097.

Acta Cryst. (2010). E66, m969 [doi:10.1107/S160053681002814X]

(Methanol-KO)(perchlorato-KO)bis(triphenylphosphine-KP)silver(I)

L.-N. Cui, Q.-H. Jin, K.-Y. Hu and C.-L. Zhang

Comment

As a part of our studies on the systematic structural chemistry of silver(I) complexes with ligands containing phosphine and nitrogen atoms (Jin *et al.*, 2010; Wu *et al.*,2009), we synthesized the new title complex, (1), under catalysis of 2aminopyrimidine. A similar complex ($[Ag(PPh_3)_3(ClO_4)]$ (2) (Cui *et al.*, 2010) was synthesized by the same reaction as for complex (1), but with a longer evaporation time. It can be assumed that during the long period of crystal growth, a PPh₃ group replaces the coordinated CH₃OH molecule in (1), resulting in the transformation to complex (2).

The molecular structure of the title complex, (1), is depicted in Fig. 1. The Ag^+ ion is four coordinated by two phosphorus atoms from the two PPh₃ ligands, one oxygen atom (O1) from a ClO₄ anion and one O-atom (O5) from a molecule of methanol. The Ag—P distances of 2.4308 (11) Å and 2.4276 (11) Å are shorter than those observed in complex (2), where the Ag-P distances vary between 2.5047 (13) - 2.5641 (14) Å. They are however longer than those in complexes AgNO₂:PPh₃(1:1) [2.3918 (4) Å], and AgNO₂:PPh₃(1:2) [2.412 (1)–2.440 (1) Å] (Cingolani *et al.*, 2002). In complex (1) the Ag—O1(perchlorate) distance of 2.540 (4) Å is shorter than that in complex (2) [2.668 (14) Å], and distance Ag—O5(methanol) is 2.414 (4) Å.

In complex (1) the P—Ag—O angles are in the range 97.68 (10) - 114.20 (9) °, the P—Ag—P angle is 133.15 (4) ° and angle O1—Ag—O5 is 92.22 (13) °. This comfirms the distored tetrahedral environment around the silver atom. In complex (2) the P—Ag—O angles are in the range of 87.1 (4) - 118.1 (4) °, while the P—Ag—P angles are in the range of 114.70 (4) - 119.17 (5)°. Other similar complexes include adducts AgX:PPh₃:*L* where *X* is a simple inorganic or organic anion, including nitrate (Jin *et al.*, 2010; Nicola *et al.*, 2007), nitrite (Pettinari *et al.*, 2007), acetate (Effendy *et al.*, 2007*a*), perchlorate (Effendy *et al.*, 2007*b*), and trifluoroacetate (Awaleh *et al.*, 2005; Balakrishna *et al.*; 2009; Wu *et al.*, 2009).

In the crystal structure of the title complex, (1), symmetry related molecules are linked via a bifocated O-H···O hydrogen bond involving the methanol OH group and two perchlorate O-atoms, O2 and O3 (Table 1). In this manner zigzag chains are formed propagating along [010].

Experimental

A mixture of AgClO₄, PPh₃ and 2-aminopyrimidine, in the molar ratio of 1:1:2, in CH₂Cl₂ and MeOH (10 ml,V/V=1/1) was stirred for 2 h at room temperature, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of colorless crystals of the title complex (1). Crystals, suitable for single-crystal X-ray diffraction, were selected directly from the sample as prepared. Analysis Found (%): C 58.50, H 5.02; calculated: C 58.19, H 4.45.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H 0.93 - 0.96 Å with $U_{iso}(H) = k \times U_{eq}$ (parent O or C-atom), where k = 1.5 for OH and CH₃ H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1. Perspective view of the basic unit of the title complex, (1), with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

(Methanol-κO)(perchlorato-κO)bis(triphenylphosphine- κP)silver(I)

Crystal data

[Ag(ClO ₄)(CH ₄ O)(C ₁₈ H ₁₅ P) ₂]	F(000) = 1560
$M_r = 763.90$	$D_{\rm x} = 1.470 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4281 reflections
a = 13.6426 (15) Å	$\theta = 2.6 - 23.6^{\circ}$
b = 12.8444 (14) Å	$\mu = 0.80 \text{ mm}^{-1}$
c = 19.714 (2) Å	T = 298 K
$\beta = 92.602 \ (1)^{\circ}$	Block, colourless
$V = 3450.9 (7) \text{ Å}^3$	$0.33 \times 0.22 \times 0.14 \text{ mm}$
7 = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	6073 independent reflections
Radiation source: fine-focus sealed tube	3802 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -9 \rightarrow 16$
$T_{\min} = 0.779, \ T_{\max} = 0.897$	$k = -15 \rightarrow 13$
17113 measured reflections	$l = -23 \rightarrow 19$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0349P)^2 + 2.0561P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\text{max}} = 0.49 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	nuivalent	isotror	oic dis	placement	parameters	(Å '	i)
1		000.000000000000		00.0000	0. 00		1001.00				(/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.35069 (2)	0.19066 (3)	0.13302 (2)	0.0492 (1)
Cl1	0.23718 (9)	-0.06402 (9)	0.15761 (6)	0.0563 (5)
P1	0.51164 (8)	0.18659 (9)	0.19116 (6)	0.0434 (4)
P2	0.28652 (8)	0.27792 (9)	0.03118 (6)	0.0402 (4)
01	0.3162 (3)	-0.0036 (3)	0.1356 (2)	0.1009 (19)
O2	0.2245 (3)	-0.0476 (3)	0.2273 (2)	0.104 (2)
O3	0.2556 (3)	-0.1698 (3)	0.1447 (2)	0.105 (2)
O4	0.1519 (3)	-0.0337 (4)	0.1199 (2)	0.116 (2)
05	0.2320 (4)	0.2257 (3)	0.2172 (2)	0.117 (2)
C1	0.5365 (3)	0.0933 (3)	0.2592 (2)	0.0441 (17)
C2	0.6309 (3)	0.0626 (4)	0.2795 (2)	0.0595 (17)
C3	0.6456 (4)	-0.0130 (4)	0.3280 (3)	0.068 (2)
C4	0.5684 (5)	-0.0585 (4)	0.3573 (3)	0.072 (2)
C5	0.4755 (4)	-0.0293 (4)	0.3378 (3)	0.073 (2)
C6	0.4585 (4)	0.0467 (4)	0.2894 (2)	0.0567 (17)
C7	0.5424 (3)	0.3148 (3)	0.2245 (2)	0.0461 (16)
C8	0.5697 (4)	0.3343 (4)	0.2909 (3)	0.071 (2)
C9	0.5893 (5)	0.4351 (5)	0.3125 (3)	0.097 (3)
C10	0.5824 (4)	0.5160 (5)	0.2679 (4)	0.084 (3)
C11	0.5531 (4)	0.4978 (4)	0.2022 (3)	0.079 (3)
C12	0.5331 (4)	0.3987 (4)	0.1808 (3)	0.065 (2)
C13	0.6084 (3)	0.1580 (3)	0.1335 (2)	0.0432 (17)
C14	0.5900 (4)	0.0818 (4)	0.0847 (3)	0.0598 (19)
C15	0.6607 (4)	0.0530 (4)	0.0408 (3)	0.073 (2)

C16	0.7508 (4)	0.0993 (4)	0.0451 (3)	0.068 (2)
C17	0.7709 (4)	0.1730 (4)	0.0933 (3)	0.067 (2)
C18	0.7004 (3)	0.2023 (4)	0.1375 (2)	0.0563 (17)
C19	0.3053 (3)	0.4171 (3)	0.0383 (2)	0.0445 (17)
C20	0.2879 (3)	0.4642 (4)	0.0994 (3)	0.0593 (19)
C21	0.2911 (4)	0.5714 (4)	0.1062 (3)	0.074 (2)
C22	0.3139 (4)	0.6310 (4)	0.0518 (4)	0.082 (3)
C23	0.3348 (5)	0.5859 (4)	-0.0079 (3)	0.090 (3)
C24	0.3307 (4)	0.4786 (4)	-0.0151 (3)	0.070(2)
C25	0.1556 (3)	0.2673 (3)	0.0099 (2)	0.0397 (17)
C26	0.0983 (3)	0.3488 (4)	-0.0128 (2)	0.0544 (17)
C27	0.0012 (3)	0.3347 (4)	-0.0322 (3)	0.061 (2)
C28	-0.0394 (4)	0.2396 (5)	-0.0299 (3)	0.070 (2)
C29	0.0159 (4)	0.1583 (4)	-0.0061 (4)	0.095 (3)
C30	0.1122 (4)	0.1719 (4)	0.0146 (3)	0.074 (2)
C31	0.3441 (3)	0.2409 (3)	-0.0468 (2)	0.0430 (17)
C32	0.2929 (4)	0.2312 (4)	-0.1076 (3)	0.070 (2)
C33	0.3389 (5)	0.1985 (5)	-0.1648 (3)	0.086 (3)
C34	0.4358 (5)	0.1776 (4)	-0.1622 (3)	0.075 (3)
C35	0.4887 (4)	0.1880 (4)	-0.1021 (3)	0.076 (2)
C36	0.4426 (3)	0.2193 (4)	-0.0450 (3)	0.063 (2)
C37	0.1331 (5)	0.2035 (5)	0.2160 (3)	0.100 (3)
H2	0.68450	0.09350	0.26000	0.0720*
H3	0.70910	-0.03320	0.34100	0.0810*
H4	0.57890	-0.10930	0.39040	0.0870*
H5	0.24420	0.27180	0.24520	0.1760*
H5A	0 42250	-0.06110	0.35750	0.0880*
H6	0.39460	0.06650	0.27710	0.0680*
H8	0.57510	0.27960	0.32170	0.0860*
H9	0.60730	0.44770	0.35780	0.1170*
H10	0 59770	0 58330	0 28230	0 1010*
H11	0.54670	0.55300	0.17180	0.0940*
H12	0.51280	0 38740	0 13570	0.0780*
H14	0.52890	0.04960	0.08170	0.0720*
H15	0.64710	0.00210	0.00820	0.0870*
H16	0.79850	0.08050	0.01520	0.0810*
H17	0.83260	0.20380	0.09650	0.0800*
H18	0.71520	0.25260	0 17040	0.0680*
H20	0.27380	0.42330	0 13670	0.0710*
H21	0.27780	0.60250	0.14730	0.0890*
H22	0.31510	0.70310	0.05580	0.0980*
H23	0.35200	0.62710	-0.04420	0.1080*
H24	0.34520	0.44820	-0.05630	0.0840*
H26	0.12570	0.41490	-0.01510	0.0650*
H27	-0.03660	0.39130	-0.04710	0.0740*
H28	-0 10450	0 22950	-0.04450	0.0840*
H29	-0.01210	0.09240	-0.00390	0 1140*
H30	0 14840	0.11580	0.03200	0.0880*
H32	0.22630	0 24680	-0 11050	0.0830*
	0.22000	0.21000	0.11000	5.0050

H33	0.30260	0.19080	-0.20560	0.1040*
H34	0.46640	0.15640	-0.20100	0.0900*
H35	0.55570	0.17390	-0.09980	0.0910*
H36	0.47910	0.22600	-0.00420	0.0760*
H37A	0.10040	0.25310	0.24350	0.1490*
H37B	0.12360	0.13470	0.23350	0.1490*
H37C	0.10650	0.20730	0.17010	0.1490*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0433 (2)	0.0591 (2)	0.0444 (2)	-0.0019 (2)	-0.0073 (2)	0.0065 (2)
Cl1	0.0676 (9)	0.0462 (7)	0.0551 (8)	-0.0017 (6)	0.0021 (6)	-0.0027 (6)
P1	0.0402 (7)	0.0533 (7)	0.0360 (7)	-0.0027 (6)	-0.0063 (5)	0.0034 (6)
P2	0.0383 (7)	0.0454 (7)	0.0363 (7)	-0.0003 (5)	-0.0036 (5)	0.0033 (5)
01	0.119 (3)	0.070 (3)	0.117 (4)	-0.039 (2)	0.041 (3)	-0.014 (2)
02	0.143 (4)	0.122 (4)	0.048 (3)	0.005 (3)	0.019 (2)	-0.002 (2)
03	0.130 (4)	0.040 (2)	0.147 (4)	0.002 (2)	0.020 (3)	-0.012 (2)
04	0.104 (3)	0.131 (4)	0.111 (4)	0.025 (3)	-0.029 (3)	-0.001 (3)
05	0.121 (4)	0.120 (4)	0.116 (4)	-0.037 (3)	0.068 (3)	-0.067 (3)
C1	0.048 (3)	0.051 (3)	0.033 (3)	-0.005 (2)	-0.001 (2)	0.001 (2)
C2	0.053 (3)	0.073 (3)	0.052 (3)	0.001 (3)	-0.004 (2)	0.014 (3)
C3	0.075 (4)	0.071 (4)	0.057 (4)	0.017 (3)	-0.011 (3)	0.009 (3)
C4	0.111 (5)	0.059 (3)	0.047 (4)	0.017 (3)	0.003 (3)	0.009 (3)
C5	0.088 (4)	0.067 (4)	0.067 (4)	-0.012 (3)	0.023 (3)	0.011 (3)
C6	0.059 (3)	0.060 (3)	0.051 (3)	-0.003 (3)	0.002 (2)	0.004 (3)
C7	0.035 (2)	0.052 (3)	0.051 (3)	-0.001 (2)	-0.001 (2)	-0.002 (2)
C8	0.092 (4)	0.064 (4)	0.056 (4)	0.004 (3)	-0.018 (3)	-0.010 (3)
C9	0.135 (6)	0.076 (5)	0.077 (5)	0.006 (4)	-0.031 (4)	-0.027 (4)
C10	0.081 (4)	0.059 (4)	0.111 (6)	0.003 (3)	-0.007 (4)	-0.024 (4)
C11	0.089 (4)	0.060 (4)	0.087 (5)	-0.001 (3)	0.009 (3)	0.003 (3)
C12	0.082 (4)	0.063 (4)	0.049 (3)	-0.006 (3)	-0.003 (3)	-0.001 (3)
C13	0.047 (3)	0.047 (3)	0.035 (3)	0.000 (2)	-0.004 (2)	0.003 (2)
C14	0.058 (3)	0.061 (3)	0.060 (4)	-0.001 (3)	0.000 (3)	-0.007 (3)
C15	0.082 (4)	0.066 (4)	0.070 (4)	0.006 (3)	0.010 (3)	-0.017 (3)
C16	0.075 (4)	0.065 (4)	0.065 (4)	0.015 (3)	0.023 (3)	0.005 (3)
C17	0.058 (3)	0.076 (4)	0.068 (4)	-0.005 (3)	0.018 (3)	0.006 (3)
C18	0.059 (3)	0.062 (3)	0.048 (3)	-0.007 (3)	0.004 (2)	-0.007 (2)
C19	0.041 (3)	0.052 (3)	0.040 (3)	-0.002 (2)	-0.002 (2)	-0.002 (2)
C20	0.066 (3)	0.057 (3)	0.055 (4)	-0.007 (2)	0.003 (2)	-0.007 (3)
C21	0.075 (4)	0.072 (4)	0.075 (4)	-0.002 (3)	0.007 (3)	-0.033 (3)
C22	0.082 (4)	0.051 (4)	0.112 (6)	-0.008 (3)	0.011 (4)	-0.014 (4)
C23	0.128 (6)	0.055 (4)	0.090 (5)	-0.018 (3)	0.030 (4)	0.004 (4)
C24	0.101 (4)	0.054 (3)	0.056 (4)	-0.007 (3)	0.017 (3)	-0.002 (3)
C25	0.038 (3)	0.043 (3)	0.038 (3)	0.000 (2)	0.0021 (19)	0.001 (2)
C26	0.051 (3)	0.051 (3)	0.060 (3)	0.000 (2)	-0.009 (2)	0.009 (2)
C27	0.046 (3)	0.072 (4)	0.065 (4)	0.008 (3)	-0.009 (2)	0.014 (3)
C28	0.038 (3)	0.090 (4)	0.081 (4)	-0.002 (3)	-0.007 (3)	0.000 (3)

C29	0.054 (4)	0.058 (4)	0.170 (7)	-0.018 (3)	-0.011 (4)	0.007 (4)
C30	0.053 (3)	0.050 (3)	0.117 (5)	-0.001 (3)	-0.010 (3)	0.015 (3)
C31	0.043 (3)	0.042 (3)	0.044 (3)	-0.002 (2)	0.002 (2)	-0.003 (2)
C32	0.056 (3)	0.103 (4)	0.049 (4)	0.019 (3)	-0.007 (3)	-0.014 (3)
C33	0.082 (5)	0.129 (6)	0.048 (4)	0.017 (4)	0.002 (3)	-0.020 (4)
C34	0.090 (5)	0.074 (4)	0.064 (4)	-0.009 (3)	0.032 (3)	-0.019 (3)
C35	0.048 (3)	0.088 (4)	0.092 (5)	-0.004 (3)	0.015 (3)	-0.026 (4)
C36	0.044 (3)	0.082 (4)	0.063 (4)	-0.003 (3)	0.000 (3)	-0.016 (3)
C37	0.096 (5)	0.095 (5)	0.110 (6)	0.016 (4)	0.032 (4)	-0.003 (4)
Geometric p	arameters (Å, °)					
Ag1—P1		2.4309 (12)	C27	—C28	1.3	43 (8)
Ag1—P2		2.4277 (12)	C28	—C29	1.3	59 (8)
Ag1—01		2.540 (4)	C29	—C30	1.3	69 (8)
Ag1—05		2.413 (5)	C31	—C36	1.3	71 (6)
Cl101		1.413 (4)	C31	—C32	1.3	65 (7)
Cl1—O2		1.408 (4)	C32	—C33	1.3	81 (8)
Cl1—O3		1.407 (4)	C33	—C34	1.3	48 (10)
Cl104		1.407 (4)	C34	—C35	1.3	66 (8)
P1—C1		1.819 (4)	C35	—C36	1.3	74 (8)
P1—C7		1.815 (4)	C2-	-H2	0.9	300
P1—C13		1.818 (4)	C3-	-H3	0.9	300
P2—C19		1.811 (4)	C4-	-H4	0.9	300
P2—C25		1.821 (4)	C5-	-H5A	0.9	300
P2-C31		1.821 (4)	C6–	-H6	0.9	300
O5—C37		1.378 (9)	C8–	-H8	0.9	300
O5—H5		0.8200	С9-	-H9	0.9	300
C1—C2		1.388 (6)	C10	—H10	0.9	300
C1—C6		1.379 (7)	C11	—H11	0.9	300
С2—С3		1.371 (7)	C12	—H12	0.9	300
C3—C4		1.356 (8)	C14	—H14	0.9	300
C4—C5		1.360 (9)	C15	—H15	0.9	300
C5—C6		1.377 (7)	C16	—H16	0.9	300
C7—C12		1.382 (7)	C17	—H17	0.9	300
С7—С8		1.368 (7)	C18	—H18	0.9	300
С8—С9		1.385 (8)	C20	—Н20	0.9	300
C9—C10		1.362 (9)	C21	—H21	0.9	300
C10-C11		1.358 (10)	C22	—H22	0.9	300
C11—C12		1.365 (7)	C23	—Н23	0.9	300
C13—C14		1.387 (7)	C24	—H24	0.9	300
C13—C18		1.377 (6)	C26	—H26	0.9	300
C14—C15		1.376 (8)	C27	—H27	0.9	300
C15—C16		1.365 (8)	C28	—H28	0.9	300
C16—C17		1.360 (8)	C29	—H29	0.9	300
C17—C18		1.379 (7)	C30	—H30	0.9	300
C19—C24		1.373 (7)	C32	—Н32	0.9	300
C19—C20		1.378 (7)	C33	—Н33	0.9	300
C20-C21		1.384 (7)	C34	—H34	0.9	300

C21—C22	1.365 (9)	С35—Н35	0.9300
C22—C23	1.354 (9)	С36—Н36	0.9300
C23—C24	1.386 (7)	С37—Н37А	0.9600
C25—C26	1.370 (6)	С37—Н37В	0.9600
C25—C30	1.366 (7)	С37—Н37С	0.9600
C26—C27	1.374 (6)		
P1—Ag1—P2	133.15 (4)	C31—C32—C33	120.8 (5)
P1—Ag1—O1	97.68 (10)	C32—C33—C34	120.7 (6)
P1—Ag1—O5	107.44 (12)	C33—C34—C35	119.5 (6)
P2—Ag1—O1	114.20 (9)	C34—C35—C36	119.7 (5)
P2—Ag1—O5	104.75 (11)	C31—C36—C35	121.5 (5)
O1—Ag1—O5	92.22 (13)	С1—С2—Н2	120.00
01—Cl1—O2	110.3 (2)	С3—С2—Н2	120.00
O1—Cl1—O3	109.3 (2)	С2—С3—Н3	120.00
01—Cl1—O4	108.1 (3)	С4—С3—Н3	120.00
O2—Cl1—O3	110.6 (2)	С3—С4—Н4	120.00
O2—Cl1—O4	109.8 (2)	С5—С4—Н4	120.00
O3—Cl1—O4	108.8 (3)	С4—С5—Н5А	120.00
Ag1—P1—C1	119.74 (14)	С6—С5—Н5А	119.00
Ag1—P1—C7	109.89 (14)	С1—С6—Н6	120.00
Ag1—P1—C13	112.05 (14)	С5—С6—Н6	120.00
C1—P1—C7	107.36 (18)	С7—С8—Н8	120.00
C1—P1—C13	102.22 (19)	С9—С8—Н8	120.00
C7—P1—C13	104.31 (19)	С8—С9—Н9	120.00
Ag1—P2—C19	110.32 (14)	С10—С9—Н9	120.00
Ag1—P2—C25	117.97 (13)	С9—С10—Н10	120.00
Ag1—P2—C31	115.11 (14)	C11—C10—H10	120.00
C19—P2—C25	103.04 (19)	C10-C11-H11	120.00
C19—P2—C31	104.97 (18)	C12—C11—H11	120.00
C25—P2—C31	104.01 (19)	C7—C12—H12	119.00
Ag1—O1—Cl1	133.7 (2)	C11—C12—H12	119.00
Ag1—O5—C37	129.5 (3)	C13—C14—H14	119.00
С37—О5—Н5	109.00	C15—C14—H14	120.00
Ag1—05—H5	118.00	C14—C15—H15	120.00
P1—C1—C6	118.9 (3)	C16—C15—H15	120.00
P1—C1—C2	122.6 (3)	C15—C16—H16	120.00
C2—C1—C6	118.4 (4)	C17—C16—H16	120.00
C1—C2—C3	120.4 (4)	C16—C17—H17	120.00
C2—C3—C4	120.7 (5)	C18—C17—H17	120.00
C3—C4—C5	119.5 (5)	C13—C18—H18	120.00
C4—C5—C6	121.1 (5)	C17—C18—H18	120.00
C1—C6—C5	119.8 (5)	C19—C20—H20	120.00
P1—C7—C12	117.9 (3)	C21—C20—H20	119.00
P1—C7—C8	124.1 (3)	C20—C21—H21	120.00
C8—C7—C12	117.9 (4)	С22—С21—Н21	120.00
C7—C8—C9	120.4 (5)	C21—C22—H22	120.00
C8—C9—C10	120.5 (6)	С23—С22—Н22	120.00
C9—C10—C11	119.5 (6)	С22—С23—Н23	120.00
C10-C11-C12	120.1 (5)	С24—С23—Н23	120.00
	· /		

C7—C12—C11	121.6 (5)	C19—C24—H24	120.00
P1-C13-C14	117.5 (3)	C23—C24—H24	120.00
C14—C13—C18	117.8 (4)	C25—C26—H26	119.00
P1-C13-C18	124.5 (3)	C27—C26—H26	119.00
C13—C14—C15	121.1 (5)	C26—C27—H27	120.00
C14—C15—C16	119.9 (5)	C28—C27—H27	120.00
C15—C16—C17	119.9 (5)	C27—C28—H28	120.00
C16—C17—C18	120.5 (5)	C29—C28—H28	120.00
C13—C18—C17	120.7 (4)	C28—C29—H29	119.00
P2-C19-C24	123.3 (3)	C30—C29—H29	120.00
P2-C19-C20	118.2 (3)	С25—С30—Н30	120.00
C20—C19—C24	118.5 (4)	С29—С30—Н30	120.00
C19—C20—C21	121.0 (5)	C31—C32—H32	120.00
C20—C21—C22	119.3 (5)	C33—C32—H32	120.00
C21—C22—C23	120.5 (5)	С32—С33—Н33	120.00
C22—C23—C24	120.4 (5)	C34—C33—H33	120.00
C19—C24—C23	120.3 (5)	C33—C34—H34	120.00
P2-C25-C26	123.9 (3)	C35—C34—H34	120.00
C26—C25—C30	117.7 (4)	C34—C35—H35	120.00
P2-C25-C30	118.4 (3)	C36—C35—H35	120.00
C25—C26—C27	121.3 (5)	C31—C36—H36	119.00
C26—C27—C28	120.3 (5)	C35—C36—H36	119.00
C27—C28—C29	119.2 (5)	O5—C37—H37A	109.00
C28—C29—C30	121.0 (5)	O5—C37—H37B	109.00
C25—C30—C29	120.5 (5)	O5—C37—H37C	109.00
P2—C31—C32	122.8 (4)	H37A—C37—H37B	110.00
C32—C31—C36	117.8 (4)	H37A—C37—H37C	109.00
P2-C31-C36	119.4 (4)	H37B—C37—H37C	110.00
P2—Ag1—P1—C1	-16950(15)	C31 - P2 - C25 - C30	84 1 (4)
P2—Ag1—P1—C7	65 60 (15)	Ag1 - P2 - C31 - C32	142 6 (3)
$\frac{P2}{P2} - \frac{Ag1}{P1} - \frac{P1}{C13}$	-49.87(15)	$Ag1_P2_C31_C36$	-35.9(4)
$\Omega_1 - Ag_1 - P_1 - C_1$	-35.61(18)	$C_{19} = P_{2} = C_{31} = C_{32}$	-959(4)
O1 - Ag1 - P1 - C7	-16050(17)	C19 - P2 - C31 - C36	85.6 (4)
$\Omega_1 = Ag_1 = P_1 = C_{13}$	84 02 (17)	$C_{25} = P_{2} = C_{31} = C_{32}$	120(4)
05 - Ag1 - P1 - C1	59 18 (18)	$C_{25} = P_{2} = C_{31} = C_{36}$	-1665(4)
05 Ag1 $P1$ $C7$	-65 72 (17)	P1-C1-C2-C3	-1757(4)
05 Ag1 $P1$ $C13$	178 80 (17)	11 - 01 - 02 - 03	0.6 (7)
$P1_Ag1_P2_C19$	-56.81(16)	$P_1 - C_1 - C_6 - C_5$	175.6(4)
$P1_Ag1_P2_C25$	-17479(15)	C_{2}	-0.8(7)
$P1_Ag1_P2_C31$	61 73 (16)	$C_{1} = C_{2} = C_{3} = C_{4}$	-0.5(8)
$\Omega_1 = Ag_1 = P_2 = C_19$	174 72 (17)	$C_{1}^{2} = C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2}$	0.6 (8)
01 - Ag1 - P2 - C25	56 74 (18)	C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	-0.9(8)
01 - Ag1 - P2 - C31	-66 74 (18)	C_{4} C_{5} C_{6} C_{1}	10(8)
05 - Ag1 - P2 - C19	75 38 (18)	P1 - C7 - C8 - C9	-178.2(4)
05 Ag1 P2 C25	-42 60 (19)	12 - 07 - 08 - 09	-14(8)
05 Ag1 P2 C31	-166.08(18)	P1 - C7 - C12 - C11	178 8 (A)
P1 = Ag1 = O1 = C11	127 5 (3)	C8 - C7 - C12 - C11	19(8)
$P^{2}_{Ag1}_{O1}_{O1}_{O1}_{O1}_{O1}$	-87.7(3)	C7 - C8 - C9 - C10	-0.5 (0)
12 - Ag1 = 01 = 011	10 6 (3)	$C_{1} = C_{2} = C_{1} = C_{1}$	2 1 (0)
of -Agi-Oi-Cii	17.0 (3)	0-0-010-011	2.1 (9)

P1—Ag1—O5—C37	-156.7 (4)	C9—C10—C11—C12	-1.6 (9)
P2—Ag1—O5—C37	57.9 (5)	C10-C11-C12-C7	-0.4 (8)
O1—Ag1—O5—C37	-57.9 (5)	P1-C13-C14-C15	-177.6 (4)
O2-Cl1-O1-Ag1	-60.3 (4)	C18—C13—C14—C15	-1.3 (7)
O3-Cl1-O1-Ag1	177.9 (3)	P1-C13-C18-C17	177.3 (4)
O4-Cl1-O1-Ag1	59.7 (4)	C14—C13—C18—C17	1.3 (7)
Ag1—P1—C1—C2	158.6 (3)	C13-C14-C15-C16	0.3 (8)
Ag1—P1—C1—C6	-17.7 (4)	C14-C15-C16-C17	0.8 (8)
C7—P1—C1—C2	-75.3 (4)	C15—C16—C17—C18	-0.8 (8)
C7—P1—C1—C6	108.4 (4)	C16-C17-C18-C13	-0.3 (8)
C13—P1—C1—C2	34.1 (4)	P2-C19-C20-C21	-173.3 (4)
C13—P1—C1—C6	-142.2 (3)	C24—C19—C20—C21	3.1 (7)
Ag1—P1—C7—C8	126.0 (4)	P2-C19-C24-C23	173.8 (4)
Ag1—P1—C7—C12	-50.8 (4)	C20-C19-C24-C23	-2.5 (8)
C1—P1—C7—C8	-5.8 (5)	C19—C20—C21—C22	-1.4 (8)
C1—P1—C7—C12	177.5 (4)	C20-C21-C22-C23	-1.1 (9)
C13—P1—C7—C8	-113.7 (4)	C21—C22—C23—C24	1.8 (9)
C13—P1—C7—C12	69.5 (4)	C22—C23—C24—C19	0.1 (9)
Ag1—P1—C13—C14	-41.4 (4)	P2-C25-C26-C27	175.8 (4)
Ag1—P1—C13—C18	142.6 (3)	C30—C25—C26—C27	-2.0 (7)
C1—P1—C13—C14	88.1 (4)	P2-C25-C30-C29	-174.7 (5)
C1—P1—C13—C18	-88.0 (4)	C26—C25—C30—C29	3.2 (8)
C7—P1—C13—C14	-160.2 (4)	C25—C26—C27—C28	-0.7 (8)
C7—P1—C13—C18	23.8 (4)	C26—C27—C28—C29	2.1 (9)
Ag1—P2—C19—C20	-42.0 (4)	C27—C28—C29—C30	-0.8 (10)
Ag1—P2—C19—C24	141.7 (4)	C28—C29—C30—C25	-1.9 (10)
C25—P2—C19—C20	84.8 (4)	P2-C31-C32-C33	-177.1 (4)
C25—P2—C19—C24	-91.5 (4)	C36—C31—C32—C33	1.4 (7)
C31—P2—C19—C20	-166.6 (3)	P2-C31-C36-C35	178.0 (4)
C31—P2—C19—C24	17.1 (4)	C32—C31—C36—C35	-0.6 (7)
Ag1—P2—C25—C26	137.5 (3)	C31—C32—C33—C34	-1.5 (9)
Ag1-P2-C25-C30	-44.7 (4)	C32—C33—C34—C35	0.6 (9)
C19—P2—C25—C26	15.7 (4)	C33—C34—C35—C36	0.2 (8)
C19—P2—C25—C30	-166.5 (4)	C34—C35—C36—C31	-0.2 (8)
C31—P2—C25—C26	-93.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O5—H5···O2 ⁱ	0.82	2.42	3.157 (6)	151
O5—H5···O3 ⁱ	0.82	2.30	3.033 (6)	150
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+1/2$.				

Fig. 1

